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Spin relaxation in cubic liquid crystals 
The role of symmetry 

by BERTIL HALLE 
Department of Physical Chemistry 1, University of Lund, 
Chemical Center, P.O. Box 124, S-22100 Lund, Sweden 

(Received 27 January 1992; accepted 15 April 1992) 

Cubic liquid-crystalline phases are usually regarded as isotropic systems. This 
view is justified for physical properties that transform as second rank tensors. 
However, the time correlation functions describing spin relaxation in cubic phases 
include components that transform as fourth rank tensors, which distinguish 
between cubic and spherical symmetry. In this work we explore the consequences of 
this fact for spin relaxation behaviour in cubic phases using group theoretical 
methods. We identify the two irreducible crystal frame time correlation functions of 
a cubic phase, derive the orientation dependence of the laboratory frame time 
correlation functions for single crystal samples, and discuss the relation of the cubic 
(fourth rank) order parameter to the microstructure of the phase. Finally, as an 
illustration of the general results, we derive the time correlation functions for a 
specific model of a micellar cubic phase. 

1. Introduction 
Liquid-crystalline phases of cubic symmetry have been identified in a variety of 

surfactant-water systems, ranging from simple detergents to complex mixtures of 
membrane lipids [l-31, but are not as well understood as the classical lamellar and 
hexagonal phases. Most recent work on cubic phases has focused on their microstruc- 
ture, i.e. the symmetry, topology, and local geometry of the dividing interface that 
separates the polar and apolar regions. While small-angle X-ray (and neutron) 
scattering can provide information about crystal symmetry (space group) and 
translational order (lattice parameter), spin relaxation can yield more detailed 
information about the interface geometry. Several nuclear spin relaxation studies of 
bicontinuous [4-91 and micellar [7,9-131 cubic phases have been reported. 

The unit cell of a cubic liquid crystal exhibits a high degree of rotational symmetry. 
Any physical quantity that transforms under rotation as a second rank tensor vanishes 
when averaged over the unit cell. For this reason cubic phases are non-birefringent 
(optically isotropic) and usually yield high resolution NMR spectra characteristic of 
isotropic fluids [14,15]. These properties led early workers in the field to use the term 
viscous isotropic phase. However, cubic phases are not isotropic; the unit cell exhibits 
the symmetry of the octahedral point group rather than that of the full three 
dimensional rotation group [16]. The purpose of the present work is to explore the 
consequences of this fact for the spin relaxation behaviour. 

Since NMR spectra from cubic liquid crystals do not usually exhibit frequency 
shifts associated with a static spin-lattice coupling, it has generally been assumed that 
the spin relaxation behaviour is also analogous to that of isotropic liquids [4-131. This 
is not the case. Since the second rank spin-lattice coupling tensor (for example an 
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626 B. Halle 

electric field gradient tensor, an intramolecular magnetic dipole-dipole interaction 
tensor, or an anisotropic chemical shift tensor) vanishes when averaged over the cubic 
unit cell, the Zeeman transitions remain degenerate and the equation of motion for the 
spin density operator takes the same form as for isotropic fluids. As a result, the spectral 
lineshape is qualitatively the same for cubic phases and isotropic fluids. However, the 
relaxation superoperator, being of second order in the spin-lattice coupling, has 
components transforming as fourth rank tensors, which behave differently in cubic and 
spherically symmetric systems. As regards the spin relaxation behaviour, it is 
important, therefore, to recognize that cubic liquid crystals are in fact anisotropic 
fluids. 

The most obvious NMR consequence of the anisotropy of cubic phases is the 
dependence of the spin relaxation rates on the orientation of the crystal with respect to 
the static magnetic field. These rates are linear combinations of three distinct 
laboratory frame spectral density functions, which are the cosine transforms of the 
corresponding laboratory frame time correlation functions. Each of these three 
functions is a different function of the crystal orientation. Although single crystal 
samples of cubic phases can be prepared [17], all spin relaxation studies so far reported 
have been performed on powder samples with an isotropic distribution of cubic unit 
cell orientations. If the inter-domain diffusion is fast compared to the orientational 
variation of the spin relaxation rates, the three isotropically averaged laboratory frame 
spectral density functions become identical, just as for an isotropic fluid. 

Even in a powder sample, however, the cubic symmetry plays an important role for 
the spin relaxation. In liquid crystals, molecular motions are naturally referred to a 
crystal frame chosen according to the symmetry of the unit cell. For a cubic phase of 
octahedral symmetry, the axes of the crystal frame would thus be identified with the 
orthogonal four-fold axes in the unit cell. The single isotropically averaged laboratory 
frame time correlation function can then be expressed as a linear combination of crystal 
frame time correlation functions. The question then arises: how many distinct 
crystal frame time correlation functions are there for a cubic liquid crystal, and what is 
their form? This question can be answered by invoking a group theoretical selection 
rule [18,19]. We thus find that there are two distinct crystal frame time correlation 
functions for a cubic phase and we refer to these as the irreducible time correlation 
functions, since they are associated with irreducible representations of the symmetry 
group of the liquid crystal. This result may be contrasted with the well-known cases of 
isotropic fluids [20], with only one irreducible time correlation function, and uniaxial 
or hexagonal liquid-crystalline phases [21-231, with three irreducible time correlation 
functions. Group theoretical analyses of orientational time correlation functions have 
previously been presented in connection with the theory of quasi-elastic neutron 
scattering and Raman spectroscopy in molecular crystals [24,25]. General discussions 
of the symmetry imposed constraints on orientational time correlation functions in 
isotropic fluids have also appeared [26,27]. Although the present case of an axially 
symmetric interaction tensor in a cubic liquid crystal is formally analogous to the case 
of an octahedral molecule in an isotropic fluid, explicit results for the orientation 
dependence of the laboratory frame time correlation functions and the relation of the 
crystal frame irreducible time correlation functions to the cubic order parameter have 
not, to our knowledge, been presented previously. 

In complex fluids, spin relaxation is generally induced by a variety of motions of 
different symmetries and on different time scales. Although the faster local motions 
may be quite complex, the slowest motion reflects the full symmetry of the system. It is 
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Spin relaxation in cubic phases 627 

this motion that is described by the crystal frame irreducible time correlation functions. 
Thus, in isotropic fluids the single irreducible time correlation function describes the 
isotropic motion, whereas, in cubic liquid crystals, the two crystal frame irreducible 
time correlation functions describe the cubic motion. 

On the basis of the topology of the dividing interface, lyotropic cubic phases are 
classified as either bicontinuous cubic phases, where both the polar and apolar regions 
are connected over macroscopic distances in three dimensions, or micellar cubic 
phases, containing closed surfactant aggregates. In bicontinuous cubic phases the 
dividing interface directly reflects the cubic symmetry. The cubic motion is then the 
diffusion of interfacial species (for example nuclei belonging to the surfactant molecule 
or its counterion, which are effectively confined to the interface) over the dividing 
interface. Using concepts from the differential geometry of minimal surfaces, we have 
recently [28] considered in detail the cubic irreducible time correlation functions. 
describing surface diffusion in bicontinuous cubic phases whose microstructure can be 
modelled in terms of triply periodic minimal surfaces. In micellar cubic phases it is the 
spatial arrangement of the micelles that reflects the cubic symmetry and the cubic 
motion is the process that allows the spin-bearing species to sample all of the 
inequivalent micelles of the cubic unit cell. Molecular diffusion over the surface of the 
individual micelles also contributes to the spin relaxation in micellar cubic phases, but 
this contribution is not described by cubic irreducible time correlation functions. If the 
micelles are uniaxial, surface diffusion is instead described by the three uniaxial 
irreducible time correlation functions, which, in the case of spheroidal micelles, have 
been considered in detail elsewhere [29]. 

The outline of this paper is as follows. In $ 2 we define the laboratory frame and 
crystal frame time correlation functions, and in 0 3 we make use of group theory to 
identify the two cubic irreducible time correlation functions. These results are then used 
in $4 to derive the orientation dependence of the observed laboratory frame time 
correlation functions for single crystal cubic phases and the observed linear combin- 
ation of irreducible time correlation functions for powder samples. In $ 5 we express the 
initial time correlation functions in terms of the cubic order parameter, which is the 
average of the fourth rank Legendre polynomial over the cubic orientational 
distribution function. The cubic order parameter contains information about the 
geometry of the interface in bicontinuous phases and about the spatial arrangement of 
the aggregates in micellar phases. Results for specific microstructural and dynamic 
models are then presented for bicontinuous and micellar phases in 8 6 and 7, with the 
emphasis on micellar cubic phases. 

2. Laboratory frame and crystal frame time correlation functions 
We consider a system of nuclear spins whose interaction with the molecular 

environment is described by a second rank irreducible tensor V, for example an electric 
quadrupole-field gradient coupling, an intra-molecular magnetic dipole-dipole 
coupling, or an anisotropic chemical shift coupling [30]. In the motional narrowing 
regime, where the spin system evolves according to the Bloch-Wangsness-Redfield 
equation of motion [30], the relaxation behaviour of the spin system is governed by the 
three laboratory frame time correlation functions Gk(z), with k = 0,1,2, of the kth 
spherical component Vk, in a laboratory fixed frame, of the spin-lattice coupling tensor 
V, 

G;(z) = (Vr(O)Vi(z)). 
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628 B. Halle 

In a liquid crystal of cubic symmetry, if the diffusion of the spin-bearing molecule across 
the unit cell is fast compared to the spin-lattice coupling frequency, the diffusionally 
averaged coupling tensor vanishes, 

( V t )  =o. (2.2) 
(The minimum symmetry requirement is two orthogonal three-fold axes [31].) In a 
cubic liquid crystal, the static (diffusionally averaged) spin-lattice coupling (and the 
associated frequency shift) thus vanishes, and the time correlation functions Gt(z) in 
equation (2.1) decay to zero as z + a ;  just as in an isotropic (spherically symmetric) 
liquid. 

In order to identify contributions from different motional degrees of freedom, we 
introduce three coordinate systems denoted by L, C, and D. The zL, z,, and zD axes are 
defined, respectively, by the static magnetic field, a four-fold axis in the (octahedral) 
cubic unit cell, and the local director. In bicontinuous cubic phases the local director is 
the normal to the dividing interface at the current position of the spin-bearing 
molecule, whereas in micellar cubic phases it defines the preferred orientation of a 
particular micellar aggregate in the unit cell. For simplicity, we assume that the local 
director is (at least) a three-fold axis. This should be a good approximation in most 
cases (cf. $8 6 and 7). In this section we focus on the fluctuations in Vi(z )  associated with 
the cubic motion, i.e. the stochastic time dependence of the orientation R,,(z) of the 
local director in the crystal frame. We assume that the motions modulating the director 
frame components V:(z) are much faster than those modulating RcD(z). After averaging 
over the former motions, the transformation of the laboratory frame components Vt(z)  
to the local director frame takes the form 

vk(z)=(- lIkZ D 2 k n ( n ~ C ) D ~ ~ [ R C D ( z ) 1 ( v t ) ,  (2.3) 
n 

where D&(Q,,) are the elements of the second rank Wigner rotation matrix and R,, 
denotes the set of Euler angles specifying the relative orientation of the X and Yframes 
[32]. In equation (2.3) and elsewhere the range of the summation indices is from - 2  to 
+ 2, unless otherwise specified. The orientation, Q,,, of the cubic unit cell with respect 
to the static magnetic field is taken to be time independent. It should be noted that, 
unless the cubic phase is uniformly aligned, spatial diffusion through the sample causes 
RLc to fluctuate in time. Typically, such fluctuations are fast compared to the spread of 
R,, dependent spin relaxation rates. The contribution to the relaxation rates from R,, 
fluctuations is then obtained simply by averaging the orientation dependent rates (and 
time correlation functions) over the R,, distribution. In the following we make the 
assumption that the residual coupling ( V t )  in equation (2.3) is not modulated by the 
motions that induce R,, fluctuations. For notational convenience, we set it equal to 
unity. 

Substitution of equation (2.3) into equation (2.1) yields 

c,"(z; RLC) = D2_*,n(RLC)D2 kn'(RLC)G:n'(z), (2.4) 

Gk,(z) = ( ~ f ( @ D ) R M L J > ,  (2.5) 

n n' 

where we have introduced the crystal frame time correlation functions 

with the zero superscript denoting the initial time. Since n and n' range from - 2 to + 2, 
there are 25 (complex-valued) crystal frame time correlation functions to consider. 
Fortunately, this number can be reduced by exploiting the symmetries of the dynamic 
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Spin relaxation in cubic phases 629 

process and of the liquid-crystalline phase. If the stochastic process R,,(z) obeys 
detailed balance, as is the case for all diffusion and exchange processes of interest in 
lyotropic liquid crystals, then the time correlation functions are invariant under time 
reversal [33], i.e. 

implying that the time correlation function matrix is hermitian, 
G,Cn,( - Z) = Gf,,.(z), (2.6) 

G,C,'.(z) = G:,,(z). (2.7) 

This symmetry relation reduces the number of crystal frame time correlation functions 
from 25 to 15. On account of the conjugation symmetry of the Wigner functions [32], 
we have the additional symmetry relation 

Gf;,(z) = (- l)"+"'GC_,,-,,,(z), (2.8) 
which further reduces the number of time correlation functions from 15 to 9. Of these, 6 
are off-diagonal (cross) time correlation functions and, hence, complex-valued. 
Consequently, there are actually 15 distinct real-valued quantities. 

3. Irreducible time correlation functions 
As a consequence of the cubic symmetry of the unit cell, there are only two distinct 

(real-valued) crystal frame time correlation functions. To demonstrate this, we make 
use of a group-theoretical selection rule for time correlation functions [19,24-27]: 

If the functions At and Bt: transform as the components q and q' of the irreducible 
representations k and k' of the symmetry group of the system, then their time 
correlation function is non-zero only if q = q' and k = k ,  and is then independent 
of q, i.e. 

( A ~ ( o ) s ~ : ( Z ) )  = 6qq,6kk,(Ak*(0)Bk(z)). ( 3 4  
The derivation of this selection rule is straightforward; it is entirely analogous to the 
well-known selection rule for matrix elements of the hamiltonian (or any other scalar 
operator) [34]. Alternatively, it may be regarded as a special case (scalar operator) of 
the generalized Wigner-Eckart theorem (for arbitrary groups) [lS, 351. The time 
correlation function on the right hand side of equation (3.1), which is independent of the 
component index, will be referred to as an irreducible time correlation function. It is 
analogous to the reduced matrix element in the Wigner-Eckart theorem. If A = B, as in 
our case, and if the stochastic process obeys detailed balance, it follows from equations 
(2.7) and (3.1) that all irreducible time correlation functions are real-valued. 

We consider a cubic unit cell with the symmetry of the octahedral point group 0 
(or 432 in the short Hermann-Mauguin notation). (The results are the same for the full 
octahedral group 0, (or m3m), which also contains the inversion element.) While the 
Wigner functions (or spherical harmonics) D$,(R) with n = 0, f 1, f 2 form a basis for 
representing the group 0, this representation is not irreducible (as it is for the full three 
dimensional rotation group K).  In order to apply the symmetry theorem from equation 
(3.1) we therefore construct linear combinations of Wigner functions that transform as 
components of the irreducible representations of the group 0. The required symmetry 
adapted functions, first employed to solve the one electron Schrodinger equation with 
an octahedral lattice potential [36,37], are referred to as cubic harmonics. We define 
them as 

K3R) = %An), (3.2 a)  
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630 B. Halle 

(3.2 b) 

(3.2 c) 

(3.2 d) 

(3.2 e) 

As indicated by the superscripts, the cubic harmonics of rank 2 belong either to the two 
dimensional irreducible representation E or to the three dimensional irreducible 
representation T,  of the group 0 (we use Mulliken's notation for the irreducible 
representations). Furthermore, they obey the orthogonality relation 

where the integration is over the two Euler angles fi = (&, O,,, -) and dQ = d&dOcD 
sin OcD 

With the aid of equation (3.2) we can now express the crystal frame time correlation 
functions in equation (2.5) in terms of cubic harmonics, and then apply the symmetry 
theorem in equation (3.1). We thus find that the three laboratory frame time correlation 
functions in equation (2.4) take the form 

G k k  OLC, 4 c )  = m ~ L c ,  4,)Gm + F,T(OLC, 4c)GcT(z), (3.4) 

where we have introduced the two cubic irreducible time correlation functions 

G ( z )  = (KE*(QSDWE(Qd> 

= Ggo(z) = G;,(z) + Re [G;- z(z)], (3.5 a) 

GcT(z) = (KT'(Q&WT(QcD)) 

= GY,(z)=G:,(z)-Re [G';'-2(z)]. (3.5 b) 

Note that, in contrast to isotropic fluids and uniaxial phases, the cross correlation 
function G$-,(z) does not vanish in a cubic phase. 

4. Orientation dependence 
The angular functions in equation (3.4), which determine the dependence of the spin 

relaxation rates on the orientation (O,,, &) of the crystal frame with respect to the static 
magnetic field, can be expressed as 

f't= 1 - F g =  1 - 3 sin2 OLC+3H, 

Ff = 1 - FT = 2 sin' OLc- H ,  

F; = 1 - F ;  =$ C O S ~  8,, +a H, 

H =$ sin4 O,,-[7 + cos (4&)]. 

(4.1 a) 

(4.1 b) 

(4.1 c) 

(4.1 d)  

The dependence on the azimuthal angle &. is a characteristic feature of symmetries 
where zc is an n-fold axis with n < 5. As seen from equation (2.4) the & dependence in 
cubic phases is directly related to the non-zero cross correlation function G;- 2(z). 
Since the octahedral unit cell contains three orthogonal four-fold axes, the angular 
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Spin relaxation in cubic phases 63 1 

functions in equations (4.1) must be invariant under a 90" rotation about any of these 
axes. This property is readily verified from equations (4.1). For example, for any of the 
orientations (OLc, &) = (O", O"), (O", 9OO), (90", O"), and (90", 90") we obtain from equ- 
ations (3.4) and (4.1) 

Gf;W = G(4, (4.2 a) 

(4.2 b) 

(4.2 c) 

The angular functions in equations (4.1) are shown in the figure for = 0" and 45". The 
dependence on &, i.e. the angle of rotation about the four-fold axis, is seen to be weak 
for OLc<300. 

The full information content of the quadrupolar (or homonuclear dipolar) spin 
relaxation behaviour (at a given Larmor frequency wo) of a cubic single crystal consists 
of the six irreducible spectral densities Jg(kwo) and J$(koo)  with k = 0,1,2, where, for 
example 

Jg(w) = dz cos (ot)Gg(~).  s: (4.3) 

To extract these six quantities it is necessary to determine three linearly independent 
spin relaxation rates at two different crystal orientations. For example, by choosing the 
orientations (OLc, &) as (O", 00) = A and (90", 45") = B, we obtain 

(4.4 a) 

(4.4 b) 

(4.4 c) 

(4.4 d )  

JCT(w0) = J4@0,A), (4.4 e) 

JcT(200) = 455(2Wo, B) - 3J$(2Wo, A). (4.4 f )  
For a powder sample, with a random distribution of unit cell orientations, the 

information content of the spin relaxation rates is reduced. If diffusion among spatial 
regions with different unit cell orientations is fast compared to the corresponding 
difference in relaxation rates, the laboratory frame time correlation function that is 
probed is simply the isotropic average of equation (3.4), i.e. 

~;,(z) = 1 Jf d4c jn doLc sin o L C ~ t ( z ;  oLc, 4c), 
471 0 

= 3 Gg(7) + 3 G$(z). (4.5) 

As seen from the figure, a single crystal can yield the same relaxation behaviour as a 
powder sample for particular crystal orientations, for example (OLc, &)= (31-72", OO), 
(58*28", OO), or (29.67", 45"). 

5. The cubic order parameter 
The initial values of the crystal frame time correlation functions in equation (2.5) 

can all be expressed entirely in terms of the fourth rank orientational order parameter 
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632 B. Halle 

, 

BLC P 
Angular functions Ff(BLC, &) = 1 - F,T(B,, &) with k = 0,1,2, for & =O" (a) and &=45" (b). 

Q, defined as the average over the cubic unit cell of the fourth rank Legendre 
polynomial 

Q = ( P d C O S  ~ c D ) ) .  (5.1) 
We refer to this as the cubic order parameter. Expanding the product of Wigner 
functions in equation (2.5) in a Clebsch-Gordan series [32 ] ,  we obtain 

Gfn.(0) = annt - 5 1 + (- 1)" ~ 9J2 J35 n -n' n'-n ) ( D k n ' , O ( n d > .  ( 5 4  

Although there is only one unique order parameter of rank 1 G k G 4  for an axially 
symmetric interaction tensor in a cubic crystal [38,39] ,  there are actually two non-zero 
order parameters of rank 1 < k < 4, namely 

( D : O ( ~ ~ C D ) >  = Q, (5.3) 

(5.4) J 5  
J 1 4  

(%~o(QcD))  = -Q. 
Combination of equations (5 .2H5 .4 )  yields the following non-zero initial time 
correlation functions 

(5.5 a) 

(5.5 b) 
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Spin relaxation in cubic phases 633 

G:2(0)= GC2-2(O)=$+&Q, 

G$-,(O)= GC-22(0) =$Q.  

(5.5 c) 

(5.5 d )  

For the irreducible time correlation functions in equation (3.5) we thus have 

G ; ( o ) = + + ~ Q ,  (5.6 a) 

G;(o) = + - @Q. (5.6 b) 

Substitution into equation (4.5) yields G:,(O) =$, as expected for a motionally averaged 
powder sample. 

Although we have assumed that the cubic unit cell possesses octahedral symmetry 
(0 or Oh), all of our results are in fact valid also for the tetrahedral point groups Th and 
Td [16]. In the case of tetrahedral symmetry the zc axis should be taken as one of the 
three orthogonal two-fold axes. (There is no four-fold axis in these groups.) 

From its definition equation (5.1), it follows that the fourth rank order parameter is 
confined to the range 

-$<Q<l ,  (5.7) 

which is simply the range of P,(cos 0) for 0 < 0 < n. The cubic symmetry further restricts 
Q to the range 

-&<Q<&. ( 5 4  

These limits follow directly from equation (5.5) by noting that any auto 
correlation function must have a non-negative initial value. The cubic point groups are 
unique in that the symmetry not only selects the non-zero order parameters, but also 
imposes restrictions on the value of the fourth rank order parameter. 

The cubic order parameter is determined by the distribution function f(0,,) for the 
angle BCD between the local director and the crystal fixed zc axis. This distribution 
function must be invariant under all symmetry operations of the cubic point group. The 
upper limit, Q =&, corresponds to a distribution with the local director pointing with 
equal probability in any of the six orthogonal directions along the four-fold axes. The 
lower limit, Q = -A, corresponds to a distribution with the local director pointing 
with equal probability toward any of the eight corners of the cubic unit cell. 

6. Bicontinuous cubic phases 
In the case of bicontinuous cubic phases the local director is identified with the 

normal to the dividing interface at the current position of the spin-bearing molecule or 
ion. The stochastic time dependence of the Euler angles Q,,(T) then reflects the diffusion 
of the spin-bearing species over the dividing interface. In recent years bicontinuous 
cubic phases have been successfully modelled in terms of triply periodic minimal 
surfaces [40-45], in particular Schwarz's diamond (D) and primitive (P) surfaces and 
Schoen's gyroid (G) surface, which are the three cubic triply periodic minimal surfaces 
of simplest topology [4&49]. A theoretical description of spin relaxation induced by 
surface diffusion on these cubic triply periodic minimal surfaces as well as on their 
parallel surfaces has been presented elsewhere [28]. 

For the D, P, and G triply periodic minimal surfaces and their parallel surfaces, the 
cubic order parameter, which determines the initial irreducible time correlation 
functions through equation (5.6), is confined to the range [28] 

-0.24584 < Q < - 0.10423, (6.1) 
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634 B. Halle 

the upper limit pertaining to the minimal surface and the lower limit to the 
maximally displaced parallel surface. The cubic order parameter is negative 
because the normal vector distribution for these surfaces is peaked at the eight flat 
points (with vanishing gaussian curvature) of the surface, where the normal vector 
points towards a corner of the cubic unit cell (cf. 5 5). 

While the two irreducible time correlation functions G ~ ( z )  and G;(z) have different 
initial values, they have the same initial slope [28] 

where Ds is the surface diffusion coefficient of the spin-bearing species, and ( K )  is the 
average over the cubic unit cell of the (negative) gaussian curvature of the minimal 
surface. This exact result can be used to construct single exponential approximations to 
the two cubic irreducible time correlation functions [28]. 

The only microstructural model used previously to interpret spin relaxation data 
from bicontinuous cubic phases is the inscribed sphere model [7-91, where the actual 
bicontinuous dividing interface is replaced by a sphere of diameter equal to the cubic 
lattice parameter. The spin relaxation is then ascribed to force-free diffusion on the 
surface of this immobile (non-rotating) sphere. If used to determine the lattice 
parameter, this model may lead to an underestimate by as much as a factor of two [28]. 
Furthermore, since the inscribed sphere model does not possess the required cubic 
symmetry (of the unit cell), it fails to predict orientation-dependent spin relaxation rates 
from single crystal samples. 

7. Micellar cubic phases 
The case of micellar cubic phases, where the unit cell contains several micelles that 

may differ in shape and orientational constraints, is more complicated than the case of 
bicontinuous phases. In addition to molecular diffusion over the closed micellar 
surfaces, we must also consider the restricted reorientation of the micelles, and the cubic 
motion whereby the spin-bearing species is allowed to sample the full cubic symmetry 
of the unit cell (cf. 0 1). The cubic process may be molecular interchange among the 
micelles, interchange of entire micelles, or something intermediate such as a fusion- 
fission process. 

The simplest case is a cubic spatial arrangement of identical spherical micelles. The 
results of sections 3-5 are then applicable for the combined molecular surface diffusion 
and micelle rotation in the cubic potential set up by the surrounding micelles. In 
practice, however, the effect of inter-micellar (mainly electrostatic) interactions on the 
diffusion of a spin-bearing ionic species over the spherical interface may be sufficiently 
small that the spin relaxation behaviour can be treated as in an isotropic ffuid of 
spherical micelles. 

The currently favoured structural models of micellar cubic phases involve non- 
spherical micelles [SO, 5 11. We consider, therefore, a cubic unit cell composed of N non- 
spherical micelles of identical size and shape. For simplicity, we assume that the micelle 
shape is uniaxial and that the potential of mean torque experienced by each micelle is 
also uniaxial. We let these symmetry axes define the z axes of the aggregate ( A )  frame 
and the local director (D) frame, respectively. Further, the zM axis of the M frame is 
identified with the normal to the micellar surface at the current position of the spin- 
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Spin relaxation in cubic phases 635 

bearing species. As before, we assume that the local surface normal is (at least) a three- 
fold axis. In place of equation (2.3) we then have 

vk(z) = (- llk c c Ot_ kn(nLC)o~pCnCD(z)lo~qCnD,(z)lo,20[RAM(z)I. (7.l) 
n p q  

The three sets of Euler angles a,,, QDA, and R,, are modulated by cubic motions, 
restricted micelle reorientation, and molecular diffusion over the micelle surface, 
respectively. For convenience the residual coupling ( VF) ,  which is assumed to be 
uniform over the micelle surface, has been set equal to unity. The further treatment of 
this model depends on the relative rates of the three classes of motion. If the cubic 
motions are much slower than the other motions, the laboratory frame time correlation 
functions can be decomposed into a sum of two independent parts as [19] 

Gk(t) = Gk, CD(z)  + Gk, DM(t) .  (7.2) 
We consider first the contribution from cubic motions, i.e. the first term in equation 

(7.2). This is the time correlation function of the partially averaged quantity 

vk, CD(z)  = ( vk(z))DM 

= SDAsAM(- like 02_kn(RLC)o~OCnCD(z)l, (7.3) 
n 

where we have exploited the uniaxial symmetries (and the assumed statistical 
independence of OD, and R,,), and defined the second rank order parameters 

sDA = (p2(c0s OD,)) 

and 

S A M  = (P,(COS O A M b  

These order parameters are determined by the shape of the potential of mean torque 
and by the shape of the micelle, respectively. Since the micelles are of identical shape, 
S,, is the same for all N micelles. The orientational distribution f (RD,)  and hence SDA, 
however, may differ among the N micelles. The cubic processes then modulate not only 
the Euler angles RcD but also the order parameter SDA. If, on the other hand, SD, is the 
same for all N micelles, then equation (7.3) differs from equation (2.3) merely by a 
constant scaling factor and all the results of sections 3-5 apply. In particular, 

with the cubic irreducible time correlation functions given by equation (3.5). 
The second term in equation (7.2), i.e. the contribution from restricted micelle 

reorientation and molecular surface diffusion, is the time correlation function of the 
quantity 

vk ,DM(z )  = vk(z) - < vk( z ) )DM 

=(- l)kc 02kp(SZLD)BiOCaD,(z)l, (7.5) 
P 

where we have temporarily contracted the C and A frames by summing over n and q in 
equations (7.1) and (7.3), and defined 

BiO(QDM) = DiO(RDM) - 6pOSDW (7.6) 
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636 B. Halle 

We thus obtain for a particular micelle in the cubic unit cell 

Gi?, DM(r; QLD) = C C ~ 2 _ ’ p ( ~ m W  ~ ~ , ( Q L D ) ( ~ ~ ~ ( Q ~ M ) ~ ~ , ~ ( ~ D M ) ) .  (7.7) 

As the Wigner functions Dio(QDM) transform as components of the irreducible 
representations A l , ( p = O ) ,  E , , ( p =  f l), and E 2 , ( p =  5 2 )  ofthe symmetry group D,, 
of the potential of mean torque, the selection rule in equation (3.1) tells us that the 
time correlation functions on the right hand side of equation (7.7) vanish if p # pf and are 
distinct irreducible time correlation functions if p = pf. Consequently [21-23,291 

P P’ 

2 

p = o  
(7.8) L 

Gk, D M ( r ;  OLD) = C FkP(eLD)Gip(r), 

with the angular functions 

FkP(eLD)=(l -6pO/2){[d~p(eLD)12 + [dt-p(eLD)12). (7.9) 
The irreducible time correlation functions in equation (7.8) may be expressed as [29] 

G i P ( 4  = %fG;:(r) + ~poS;,4G;,M(4 + c (2 - sqo)G;:(w$Y4, (7.10) 
q=o 

where the time correlation functions 

G,”,A(r) = (Di;(QiA)Diq(QDA)) - 6p06qOS;A (7.1 1) 

describe restricted micelle reorientation, while the time correlation functions 

G;m = ( q ; ( Q ; M ) q o ( Q A , ) >  - 6,0%4 (7.12) 

describe molecular diffusion over the micellar surface. The explicit calculation of 
these time correlation functions has been described elsewhere for prolate or oblate 
spheroidal micelles [29]. 

It should be noted that the result in equation (7.8) makes no reference to the cubic 
symmetry of the liquid crystal. However, this result holds only for a particular micelle, 
subject to a potential of mean torque whose symmetry axis makes an angle OLD with the 
static magnetic field. To obtain the desired time correlation functions, we must, 
therefore, average equation (7.8) over the cubic distribution function f(QCD). If the 
irreducible time correlation functions G,.,Cr) are the same for all N micelles, we need 
only average the angular functions &’(OLD). Performing the L-rD transformation in 
two steps as L-+C-+D, averaging over f(QcD), and making use of equations (5.3) and 
(5.4), we obtain 

Gk, D d r ;  OLc, 4c)  = (Gk, DM(T 6LD))cD = Gko, D M b )  

+$QCFkE(4.c, 4C)-~lC3G$o(r)- 4G?,(z)+ G&(r)I, (7.13) 

where the angular functions Ff(OLC, 4,-) are given by equations (4.1), and 

C k a . D M ( T ) = ~ [ G ~ O ( r )  + 2c?l(z) + 2Gf2(r)1 ( 7 . 1 4 )  

is the isotropically averaged time correlation function. For a powder sample, with a 
random distribution of crystal orientations, the second term in equation ( 7 . 1 3 )  
vanishes since (F:(OLC, 4c))iso =$, and we are left with equation (7.14) as expected. 
(This result can also be derived directly from equation (7.8) by noting that 
( Ff(OLD))iso = (2 - dpO)/5.) For the special case where the micelles are oriented along the 
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Spin relaxation in cubic phases 637 

four-fold axes of the cubic unit cell (Q =&) and one of these axes is aligned with the 
magnetic field (& = 0), equation (7.13) yields 

G t ,  D M ( 4  =3CG:o(z) + G?2(4l, ( 7 . 1 5 ~ )  

c?,DM(z)=$[2G?l(z)+ G?2(z)1, (7.15 b) 

G i , ~ ~ ( z ) = & [ W o ( z )  + 4G%) + 5 ~ % z ) l .  (7 .15~)  

As an illustration of the previous rather general results, we now consider in more 
detail the structural model for micellar cubic phases of space group Pm3n (point group 
0,) proposed by Fontell et al. [SO]. This model is based on the structure deduced from 
single crystal X-ray diffraction studies of certain solid phases of a few homonuclear 
diatomic molecules (N,, y-0 , ,  P-F,) [52]. The eight micelles per unit cell are of the same 
size and shape, but are orientationally disordered in different ways: two micelles are 
spherically disordered, while of the remaining six micelles two are randomly oriented in 
each of the three orthogonal mirror planes. The cubic order parameter Q for this model 
is &. The laboratory frame time correlation function for the cubic motion is given by 
equation (7.4) with S, = -3. Since D;o(!2cD) =O for all eight micelles also C'&) = 0, so 
that only the irreducible time correlation function G$(z) of E symmetry needs to be 
considered. If the cubic motion is intermicellar exchange of the spin-bearing species it 
can be modelled as a discrete stationary Markov process. If exchange takes place with 
equal probability from a given micelle to either of N - 1 surrounding micelles ( N  is not 
necessarily equal to 8), the irreducible time correlation function decays exponentially as 

G ~ ( T )  = Gg(O) exp (- ANz). (7.16) 

The rate constant 1, is related to the mean residence time zM of the spin-bearing species 
in a micelle through 

(7.17) 

The initial time correlation function in equation (7.16) is obtained from equation (5.6 a) 
as 

G$(O) =i+BQ ==. 40 (7.18) 

For a powder sample we thus obtain (cf. equation (4.5)) 

Gko,CD(z)=&S~A4 exp ( - I N z ) .  (7.19) 

The contribution from (restricted) micelle reorientation and surface diffusion to the 
laboratory frame time correlation function for a powder sample is obtained from 
equation (7.14) as 

G t 0 , D M ( 4  = + G f ; t ( 4  +mG:&) +W&) + $ G ? 2 ( m  (7.20) 

where the first term is associated with the two isotropically tumbling micelles and the 
second term with the six micelles that tumble freely in a plane. Using equation (7.10) 
and the explicit expressions for the reorientational time correlation functions GF;(z) 
[29], and assuming that micelle tumbling (rotation about the short axes of the micelle, 
with diffusion coefficient Dl) is much slower than surface diffusion, we find 

GL,' 00 (4 = 4SL.f exp (- 6017) + 4 c (2 - d,o)Gq(z), (7.2 1) 

G&(z)=iGo(z) + t G 2 ( 4  (7.22 a) 

2 

q = o  
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638 B. Halle 

Here we have introduced the time correlation functions 

(7.23) 

for surface diffusion on the uniaxial micelle and rotation of the micelle about its 
symmetry axis (with diffusion coefficient D II). 

Combination of equations (7.2) and (7.19H7.23) yields for the laboratory frame 
time correlation function in a powder sample 

G&,(z) =&Sz,[# exp ( - A,z) + exp ( - 6 0 , ~ )  + exp ( - 4D,z)] 

++[G$,M(z) + 2 exp ( -D II z ) G f f ( z )  + 2 exp ( -40 Ilt)Gif(z)]. (7.24) 

The three exponentials in the first term refer to  intermicellar exchange, isotropic micelle 
tumbling, and in-plane micelle tumbling, respectively. The second term represents 
surface diffusion on all eight micelles in the unit cell as well as micelle rotation about the 
symmetry axis. The order parameter S,, is determined by the shape (relative 
dimensions) of the micelles, while the surface diffusion time correlation functions 
G;f ( z )  also depend on the surface diffusion coefficient Ds of the spin-bearing species. 
The calculation of S,, and G $ f ( z )  for spheroidal micelles has been described in detail 
elsewhere [29]. 

In recent studies [9,13] of spin relaxation in micellar cubic phases, a simpler form of 
the laboratory frame time correlation function was used. In the second part of equation 
(7.24) only the third term was retained; this was taken to be of the form 

G $ f ( z )  = exp (- 4Dsz/b2), 

as for surface diffusion on an infinitely long cylinder of radius b. In the first part of 
equation (7.24), the expression within square brackets was represented by a single 
exponential. By using the more accurate form of equation (7.24) the inconsistencies 
encountered with the semi-empirical time correlation function [9,13] could probably 
be removed, leading to a more reliable picture of the microstructure of these cubic 
phases. 

This work was supported by the Swedish Natural Science Research Council. I am 
grateful to Stefan Gustafsson and Olle Soderman for valuable comments on the 
manuscript. 
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